CMOS LSI

Overview

The LC79400D is a large-scale dot matrix LCD segment driver LSI. Display data transferred from the controller (4-bit parallel format) is processed through 80 -bit latching and a LCD drive signal is generated. The LC79400D can be used in conjunction with common driver LC7943D (QIP80D) as well as LC79430D (QIP100D) and LC79431D (QIP100D) to drive a widescreen LCD panel.

Features

- On-chip LCD drive circuit (80 bits)
- Display duty selection ranging from $1 / 64$ to $1 / 256$
- Supports use of chip disable pin for lower large panel power supply dissipation
- Supports externally supplied bias voltage
- Operating power supply voltage/operating temperature include

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{DD}} \text { (logic block) } & : 5 \mathrm{~V} \pm 10 \% /-20 \text { to }+75^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}(\mathrm{LCD} \text { block) } & : 12 \mathrm{~V} \text { to } 32 \mathrm{~V} /-20 \text { to }+75^{\circ} \mathrm{C}
\end{array}
$$

- Data transfer clock provides maximum 3.0 MHz and supports bidirectional shift

Package Dimensions

unit: mm
3180-QFP100D

- 4-bit parallel data input
- CMOS process
- 100-pin flat plastic package

Specifications

Absolute Maximum Ratings at $\mathbf{T a}=25 \pm 2^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings	Unit		
Maximum supply voltage (logic)	$\mathrm{V}_{\mathrm{DD}} \max$		-0.3 to +7.0	V		
Maximum supply voltage (LCD)	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}} \mathrm{max}^{* 1}$		0 to 35	V		
Maximum input voltage	$\mathrm{V}_{1} \max$		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V		
Storage temperature range	Tstg		-40 to +125	${ }^{\circ} \mathrm{C}$		Note: 1 . The voltages $\mathrm{V}_{1}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{7}, \mathrm{~V}_{\mathrm{DD}}$ and V_{EE} must obey the relationships: $\mathrm{V}_{\mathrm{DD}} \geq \mathrm{V} 1>\mathrm{V} 3>\mathrm{V} 4>\mathrm{VEE}, \mathrm{V}_{\mathrm{DD}}-\mathrm{V} 3 \leq 7 \mathrm{~V}$,
:---						
$\mathrm{V} 4-\mathrm{V}_{\mathrm{EE}} \leq 7 \mathrm{~V}$.						

Allowable Operating Ranges at $\mathbf{T a}=\mathbf{- 2 0}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=\mathbf{0} \mathrm{V}$

Parameter	Symbol	Conditions	min	typ	max	Unit
Supply voltage (logic)	$V_{D D}$		4.5		5.5	V
Supply voltage (LCD)	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$	*2, *3	12		32	V
Input high-level voltage	V_{IH}	DI1 to 4, CP, LOAD, CDR, CDL R/L, M, DISP OFF	0.8 V DD			V
Input low-level voltage	V_{IL}	DI1 to 4, CP, LOAD, CDR, CDL R/L, M, DISP OFF			$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
CP (shift clock)	${ }^{\mathrm{f}} \mathrm{CP}$	CP			3.0	MHz
CP (pulse width)	${ }^{\text {WWC }}$	CP	100			ns
LOAD pulse width	twL	LOAD	100			ns
Setup time	$\mathrm{t}_{\text {SETUP }}$	DI1 to $4 \rightarrow$ CP	80			ns
Hold time	$\mathrm{t}_{\text {Hold }}$	DI1 to $4 \rightarrow$ CP	80			ns
CP \rightarrow LOAD	${ }_{\text {t }}{ }^{\text {c }} 1$	CP \rightarrow LOAD	0			ns
	$\mathrm{t}_{\mathrm{CL}}{ }^{2}$	CP \rightarrow LOAD	100			ns
LOAD \rightarrow CP	tLC	LOAD \rightarrow CP	63			ns
Rise/Fall time	t_{R}	CP			50	ns
	t_{F}	CP			50	ns
	t_{RL}	LOAD			50	ns
	t_{FL}	LOAD			50	ns

Note:2. The voltages $\mathrm{V}_{1}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{7}, \mathrm{~V}_{\mathrm{DD}}$ and V_{EE} must obey the relationships: $\mathrm{V}_{\mathrm{DD}} \geq \mathrm{V} 1>\mathrm{V} 3>\mathrm{V} 4>\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{DD}}-\mathrm{V} 3 \leq 7 \mathrm{~V}, \mathrm{~V} 4-\mathrm{V}_{\mathrm{EE}} \leq$ 7 V .
3. When applying power, apply power to the LCD drive block after applying power to the logic block or apply power to both the blocks simultaneously. When turning off power, turn off power to the logic block after turning off power to the LCD drive block or turn off power to both the blocks simultaneously.

Electrical Characteristics at $\mathrm{Ta}=\mathbf{2 5} \pm 2^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=\mathbf{0} \mathrm{V}, \mathrm{V}_{\mathrm{DD}}=\mathbf{5} \mathrm{V} \pm \mathbf{1 0 \%}$

Parameter	Symbol	Conditions	min	typ	max	Unit
Input high-level current	$\mathrm{IIH}^{\text {H }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} ; \mathrm{LOAD}, \mathrm{CP}, \mathrm{CDR}(\mathrm{CDL}),$ R/L, DI1 to DI4, M, DISP OFF			1	$\mu \mathrm{A}$
Input low-level current	IIL	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}} ; \text { LOAD, CP, CDR (CDL), }$ R/L, DI1 to DI4, M, DISP OFF	-1			$\mu \mathrm{A}$
Output high-level voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$; CDL (CDR)	$\mathrm{V}_{\mathrm{DD}}-0.4$			V
Output low-level voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{OL}}=400 \mu \mathrm{~A}$; CDL (CDR)			0.4	V
Driver on resistor	$\mathrm{R}_{\mathrm{ON}}{ }^{1}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V},\left\|\mathrm{~V}_{\mathrm{DE}}-\mathrm{V}_{\mathrm{O}}\right\|=0.5 \mathrm{~V} * 4 ; \\ & \mathrm{O} 1 \text { to } \mathrm{O} 80 \end{aligned}$		1.5	3.0	$k \Omega$
	$\mathrm{R}_{\mathrm{ON}}{ }^{2}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=20 \mathrm{~V},\left\|\mathrm{~V}_{\mathrm{DE}}-\mathrm{V}_{\mathrm{O}}\right\|=0.5 \mathrm{~V} \text { *4; } \\ & \mathrm{O} 1 \text { to } \mathrm{O} 80 \end{aligned}$		2.0	3.5	k Ω
Standby current dissipation	$\mathrm{I}_{\text {ST }}$	$\begin{aligned} & \mathrm{CDR}(\mathrm{CDL})=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V} \\ & \mathrm{CP}=3.0 \mathrm{MHz} \text {, no-load output: } \mathrm{V}_{\mathrm{SS}} \end{aligned}$			200	$\mu \mathrm{A}$
Operation current dissipation	$\mathrm{I}_{\text {SS* }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}, \mathrm{CP}=3 \mathrm{MHz}, \\ & \mathrm{LOAD}=14 \mathrm{kHz}, \mathrm{M}=35 \mathrm{~Hz} ; \mathrm{V}_{\mathrm{SS}} \end{aligned}$			4.0	mA
	$\mathrm{I}_{\text {S }}{ }^{* 6}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}, \mathrm{CP}=3 \mathrm{MHz}, \\ & \mathrm{LOAD}=14 \mathrm{kHz}, \mathrm{M}=35 \mathrm{~Hz} ; \mathrm{V}_{\mathrm{EE}} \end{aligned}$			0.1	mA
Input capacity	Cl_{1}	$\mathrm{f}=3.0 \mathrm{MHz}$; CP		5		pF

Note:4. $\mathrm{V}_{\mathrm{DE}}=\mathrm{V} 1$ or V 3 or V 4 or $\mathrm{V}_{\mathrm{EE}}, \mathrm{V} 1=\mathrm{V}_{\mathrm{DD}}, \mathrm{V} 3=15 / 17\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}\right), \mathrm{V} 4=2 / 17\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}\right)$
5. I I_{SS} current flows from V_{DD} to V_{SS}.
6. $I_{E E}$ current flows from $V_{D D}$ to $V_{E E}$.

Switching Characteristics at $\mathrm{Ta}=25 \pm 2^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \pm \mathbf{1 0 \%}$

Parameter	Symbol	Conditions	min	typ	max	Unit
Output delay time	t_{D}	Load $=15 \mathrm{pF} ;$ CDR (CDL)			200	ns

Pin Assignment

Equivalent Circuit Block Diagram

Pin Descriptions

Operation Timing (for R/L = H)

A00974

Time Chart (1/200 Duty 1/15 Bias)Switching Characteristics

Sample Application

Switching Characteristics

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of November, 1997. Specifications and information herein are subject to change without notice.

